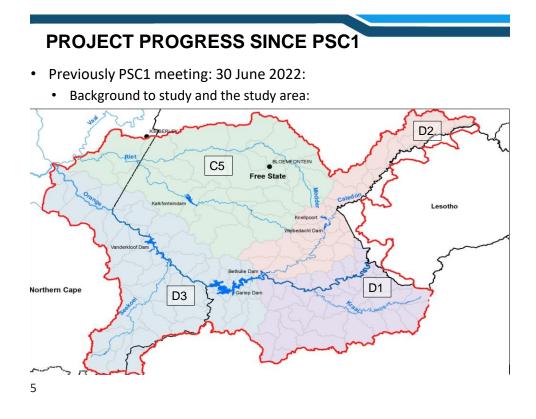
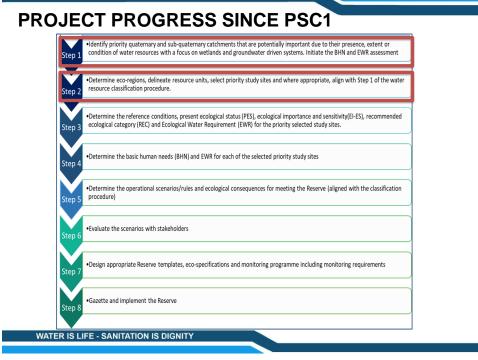
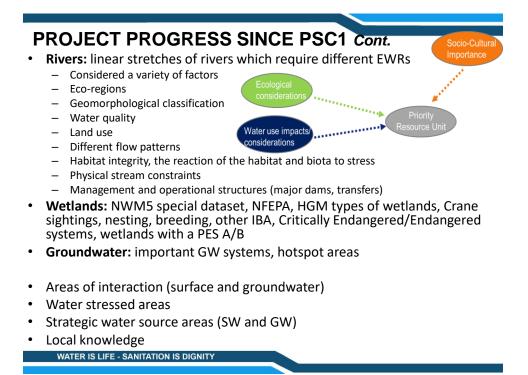


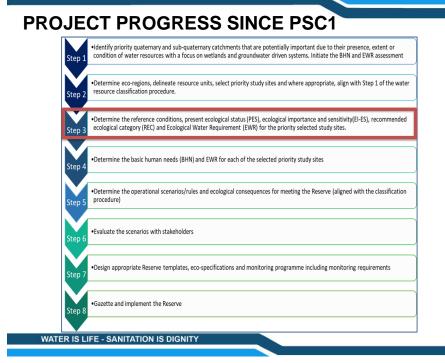
PRESENTATION AGENDA

- · Re-cap on study objective and approach;
- Project progress since PSC1 (June 2022 October 2023);
- · PSC2 objective;
- · Wetland component results and feedback;
- · Groundwater Reserve component results and feedback;
- · River's component results (eco-categorisation);
- Flow Management Plan;
- · Integration component
- · Proposed scenarios; and
- Next steps.


STUDY APPROACH


- Study is of a technical nature, supported by stakeholder engagement.
- The approach and methodology that are followed for this study is in accordance with the 8-step process as outlined in Regulation 810 (Government Gazette 33541) dated 17 September 2010


	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		
INTEGRATED FRAMEWORK	CLASSIFICATION	RESERVE	RESOURCE QUALITY OBJECTIVES
1. Delineate and prioritise RUs and select study sites	1. Delineate IUAs and describe status quo	1. Initiate the BN and EWR assessment	1. ID water users within each resource management unit
•	+	+	+
2. Describe status quo and delineate the study area into IUAs	2. Link the socio-economic and ecological value and condition of the water resources	2. Determine EcoRegions, delineate RU, select study sites (align with Step 1)	2. Determine present state po water user
	1	1	1
3. Quantify BHN and EWR	3. Quantify EWRs and changes in non-water quality EGSA	3. Determine reference condition, PES and EIS of study sites	3. Determine desired water quality per user
1	1	1	1
4. Identify and evaluate scenarios within IWRM	4. Determine an ecologically sustainable base configuration scenarios	4. Determine BHN and EWR (align Step 3)	4. Determine water user specifications
1	1	1	1
5. Determine Water Resource Classes based on catchment configurations for the identified scenarios	5. Evaluate scenarios within IWRM	5. Determine operational scenarios and its socio-economic and ecological consequences	5. Determine water quality requirements
1	1	1	1
6. Determine RQOs (narrative and numerical limits) and provide implementation information	6. Evaluate scenarios with stakeholders	6. Evaluate the scenarios with stakeholders (align Step 6)	6. Gazette and implement
•	+		
7. Gazette Water Resource Classes and RQOs	7. Gazette and implement the class configuration	7. Design an appropriate monitoring programme	
1		+	
8. Gazette the Reserve		8. Gazette and implement the Reserve	


- Reserve determination process as specified in the 'Development of Procedures to operationalise Resource Directed Measures (DWS, 2017).
- Methodologies for Reserve determinations of rivers, wetlands and groundwater

WATER IS LIFE - SANITATION IS DIGNITY

PROJECT PROGRESS SINCE PSC1

OBJECTIVE FOR PSC2

- Provide feedback to the key stakeholders with regards to the following results for this high confidence study:
 - Wetland component;
 - Groundwater Reserve component;
 - Rivers
 - · Eco-categorisation and EWR quantification process
 - Flow Management Plan
 - Integration component

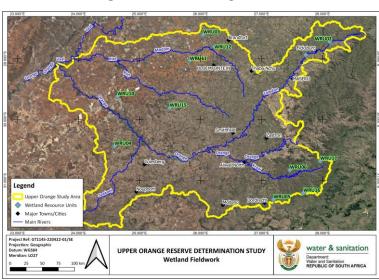
WETLANDS: APPROACH

- The DWS Rapid Ecological Reserve Determination of Inland Wetlands (Rountree *et al.,* 2013) procedure was slightly modified and implemented in this study to determine the Recommended Ecological Category (REC) for the selected WRUs:
 - Step 1: Initiate the EWR and BHN assessment and identify priority quaternary and sub-quaternary catchments;
 - Step 2: Delineate Wetland Resource Unit (WRU) and select priority sites;
 - Step 3: Determine reference conditions; PES, EIS, and REC for the priority sites:
 - Step 5: Ecological consequences of operational scenarios/rules were modelled;
 - Step 7: Eco-specifications were set for all the WRU's which specify monitoring requirements for each WRU

```
WATER IS LIFE - SANITATION IS DIGNITY
```

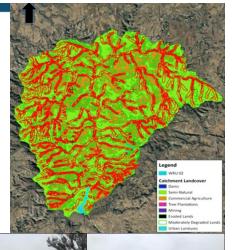
12

WETLANDS: APPROACH


- A total of 12 WRU's were visited and assessed;
- Each WRU was prioritized into one of three tiers prior to the fieldtrip which determined each WRU's overall importance and the level of detail necessary for the assessment. Tier 1 is very low detail and Tier 3 is moderate to high detail;
- · Wetland fieldwork was conducted in April 2022;
- · Final wetland report submitted to DWS; and
- A subset of WRU's will be presented here, with a focus on the Tier 2 and 3 wetlands.

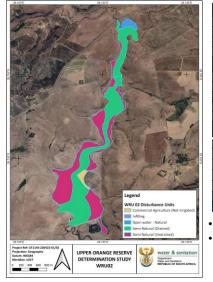
WETLAND REPORT FEEDBACK

WRU Number	Quaternary Catchment	Tier	Associated River/Groundwater Area
WRU 02	D21G	2	Brandwater River
WRU 03	C52H	1	N/A
WRU 04	D31B	1	Hondeblaf River
WRU 05	D13G	1	Wolwespruit
WRU 06	D13E	1	Klein-Wildebeesspruit
WRU 10	D33C	1	Lemoenspruit
WRU 11	C52G	3	Kaalspruit
WRU 12	C52G	3	Rietspruit
WRU 13	D22G	2	Rantsho River
WRU 15	C51H	2	Prosesspruit
WRU 16	D13D	3	Rytjiesvlaktespruit
WRU 17	D13B	1	Kraai River


WATER IS LIFE - SANITATION IS DIGNITY

14

WETLAND REPORT FEEDBACK


- Catchment is 76 000ha with the following impacts:
 - Agriculture (32%), dams, urban areas, erosion, tree plantations and mining
- Wetland is a 258ha floodplain with the following impacts:
 - Infilling, extensive channel incision which is having a draining effect, agriculture (both cultivation and grazing), AIP encroachment
- Critically endangered wetland type

WATER IS LIFE - SANITATION IS DIGNITY

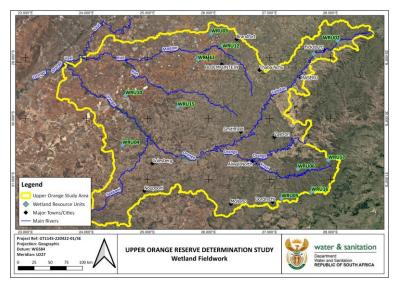
16

WETLAND: WRU02

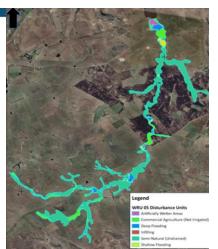
	Wetland PES Summary			
Wetland name		WRU 02 - Brand	water Floodplain	
Assessment Unit		Brandwater	Floodplain 1	
HGM type		Floodplai	n wetland	
Wetland area (ha)		258	.6 ha	
PES Assessment	Hydrology	Geomorpholog y	Water Quality	Vegetation
Impact Score	3.6	2.8	1.5	5.6
PES Score (%)	64%	72%	85%	44%
Ecological Category	с	с	В	D
Combined Impact Score	3.4			
Combined PES Score (%)	66%			
Combined Ecological Category	c			
	Brandwater Fl	loodplain		
			Importance	
Ecological Importance & Sensitivity			3.	2
Hydro-Functional Importance		1.	2	
Direct Human Benefits		0.	ı	
Overall Importance And Sensitivity Score			3.	2
Overall Importance And Sensitivity Category		gory	В	

REC is a C category

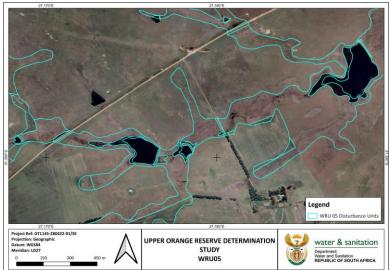
Large scale channel incision and deactivation of large portions of the channel mean there are limited rehabilitation opportunities due to cost


- Eco-Specifications:
 - Desktop landcover assessment every 3-5 years
 - Monitor integrity of flood outs and intensity of artificial drainage in these flood outs
 - · No additional cultivation in the wetland
 - No further encroachment of AIPs
- Additional recommendations
 - Remove Salix babylonica (Willow) trees from the wetland

WATER IS LIFE - SANITATION IS DIGNITY


18

WETLAND REPORT FEEDBACK


- Small catchment which forms the head of the Wolwespruit River:
 - Agriculture (25%), dams, boreholes and tree plantations
- Wetland complex comprises seep and unchannelled valley bottom wetlands with the following impacts:
 - Over 15 dams along UCVB wetland, infilling, agriculture (both cultivation and grazing), AIP encroachment

WATER IS LIFE - SANITATION IS DIGNITY

20

WETLAND: WRU05

Wetland PES Summary				
Wetland name	WRU 05a			
Assessment Unit			JCVB Wetlands	
HGM type			d VB wetland	
Wetland area (ha)			0 ha	
PES Assessment	thulas la su			Manata di su
PES Assessment Impact Score	Hydrology 2.4	Geomorphology	Water Quality	Vegetation 4.8
	2.4	78%	83%	4.8
PES Score (%)				
Ecological Category	С	с	В	D
Combined Impact Score			.8	
Combined PES Score (%)		72	2%	
Combined Ecological Category			C	
	Wetla	ind PES Summary		
Wetland name		WRU	J 05b	
Assessment Unit		Wolwespruit S	Seep Wetlands	
HGM type		Se	ep	
Wetland area (ha)		80.	5 ha	
PES Assessment	Hydrology	Geomorphology	Water Quality	Vegetation
Impact Score	2.1	2.1	1.5	4.2
PES Score (%)	79%	79%	85%	58%
Ecological Category	С	С	В	D
Combined Impact Score	2.4			
Combined PES Score (%)	76%			
Combined Ecological Category	c			

WRU 05a - Wolwespruit UCVB Wetlands			
Importance			
Ecological Importance & Sensitivity	3.2		
Hydro-Functional Importance	2.6		
Direct Human Benefits	0.8		
Overall Importance And Sensitivity Score	3.2		
Overall Importance And Sensitivity Category	В		

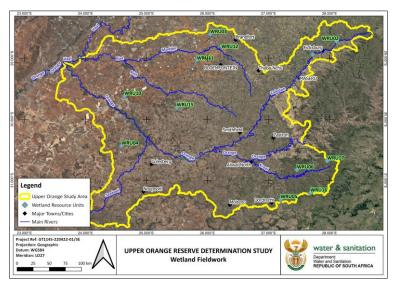
REC is **C** category as it is unrealistic to achieve a **B** category due to existing impacts in the wetlands

WRU 05b - Wolwespruit Seep Wetlands		
Importance		
Ecological Importance & Sensitivity	2.8	
Hydro-Functional Importance	1.8	
Direct Human Benefits	0.4	
Overall Importance And Sensitivity Score	2.8	
Overall Importance And Sensitivity Category C		

Extensive dam, road and agricultural infrastructure has been constructed in the wetlands which cannot be easily reversed

WATER IS LIFE - SANITATION IS DIGNITY

22

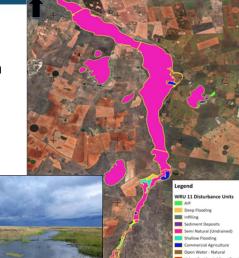

WETLAND: WRU05

Eco-Specifications:

- A WET-Health assessment should be undertaken every 2-3 years with specific focus on the Hydrology module
- The hydrology PES should not drop below a C category
- · No further dams or drains permitted in the wetlands
- · No further cultivation to be permitted in the wetlands
- Additional recommendations
 - A groundwater study must be undertaken before anymore boreholes/windpump are constructed in the wetland/catchment
 - Where possible, existing roads should be upgraded to allow throughflow

WATER IS LIFE - SANITATION IS DIGNITY

WETLAND REPORT FEEDBACK



WATER IS LIFE - SANITATION IS DIGNITY

24

WETLAND: WRU11

- Large catchment approximately 200 000ha with many impacts:
 - Agriculture (37%), urban areas, urban commercial areas, plantations and degraded areas
- Wetland complex comprises valleybottom and depression wetlands with impacts:
 - Large dam, extensive grazing, sedimentation, infilling and some channel incision
 WATER IS LIFE - SANITATION IS DIGNITY

Wetland PES Summary				
Wetland name	WRU 11a			
Assessment Unit		Kaalspruit Valley	Bottom Wetlands	
HGM type	Cha	nnelled VB wetland	not laterally mainta	ined
Wetland area (ha)		2839	.3 ha	_
PES Assessment	Hydrology Geomorphology Water Quality Vegetation			
Impact Score	1.9	2.2	1.9	4.1
PES Score (%)	81%	78%	81%	59%
Ecological Category	B C B D			
Combined Impact Score	2.5			
Combined PES Score (%)	75%			
Combined Ecological Category	c			

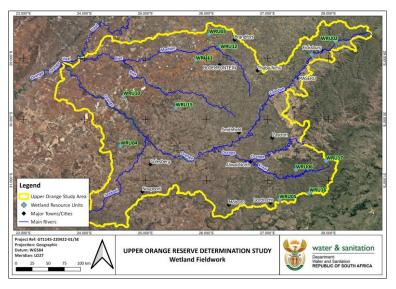
Wetland PES Summary				
Wetland name	WRU 11b			
Assessment Unit		Kaalspruit Depre	ession Wetlands	
HGM type		Depression wi	thout flushing	
Wetland area (ha)		1050	.6 ha	
PES Assessment	Hydrology Geomorphology Water Quality Vegetation			
Impact Score	2.3	2.6	2.7	4.2
PES Score (%)	77%	74%	73%	58%
Ecological Category	с с с р			
Combined Impact Score	2.9			
Combined PES Score (%)	71%			
Combined Ecological	с			
Category				

WRU 11a - Kaalspruit Valley Bottom Wetlands			
Importance			
Ecological Importance & Sensitivity	2.8		
Hydro-Functional Importance			
Direct Human Benefits			
Overall Importance And Sensitivity Score			
Overall Importance And Sensitivity Category B			

- REC is C category as it is unrealistic to achieve a B category in the valley-bottom wetlands due to existing impacts in the wetlands
- Appropriate buffer zones must be maintained
- Careful consideration of cumulative impacts of new agriculture

WRU 11b - Kaalspruit Depression Wetlands			
	Importance		
Ecological Importance & Sensitivity	2.4		
Hydro-Functional Importance	2.1		
Direct Human Benefits	0.3		
Overall Importance And Sensitivity Score	2.4		
Overall Importance And Sensitivity Category C			

WATER IS LIFE - SANITATION IS DIGNITY


26

WETLAND: WRU11

Eco-specifications:

- No further cultivation to be permitted within the remaining intact wetlands
- Formal buffer areas between cultivation and depression wetlands must be established and maintained
- AIP species must be managed at current levels
- No new roads to be approved or built through the wetlands
- Additional recommendations
 - Erosion occurring in the catchment of one of the depression wetlands should be rehabilitated

WETLAND REPORT FEEDBACK

WATER IS LIFE - SANITATION IS DIGNITY

28

WETLAND: WRU12

- Catchments range between 43 000 and 57 000 ha in size with impacts:
 - Large proportion (74%) is considered to be natural/semi-natural, agriculture (14%) and urban areas associated with Brandfort
- Two wetland types in WRU 12 namely a channelled valley-bottom and wetland flat with the following impacts:
 - Dams, grazing, erosion and point source pollution from the sewage works in Brandfort

Wetland PES Summary				
Wetland name	WRU 12a			
Assessment Unit		Aardoringspruit Val	ley Bottom Wetland	t
HGM type	Chi	annelled VB wetland	not laterally mainta	ined
Wetland area (ha)		665.	9 ha	
PES Assessment	Hydrology Geomorphology Water Quality Vegetation			
Impact Score	3.3	1.4	1.0	4.2
PES Score (%)	67%	86%	90%	58%
Ecological Category	С	В	В	D
Combined Impact Score	2.6			
Combined PES Score (%)	74%			
Combined Ecological Category	c			

WRU 12a - Aardoringspruit Valley Bottom Wetland		
	Importance	
Ecological Importance & Sensitivity	2.8	
Hydro-Functional Importance	2.5	
Direct Human Benefits	0.3	
Overall Importance And Sensitivity Score	2.8	
Overall Importance And Sensitivity Category	с	

REC is **C** category for both wetlands as it is not pragmatic to rehabilitate the wetland flat to a **B** category without large investment and removal of infrastructure

	wethe	ina r Lo Summary										
land name		WRU 12b										
sment Unit		Aardoringspruit Wetland Flat										
HGM type		Flat										
d area (ha)		Direct Human Be										
nt	Hydrology	Geomorphology	Water Quality	Vegetation	Overall Importan							
	3.4	2.2	1.9	5.4	Overall Importan							
	66%	78%	81%	46%								
egory	С	С	В	D	 Large 							
act Score		cultiv										
Score (%)		67	7%									
logical					would							

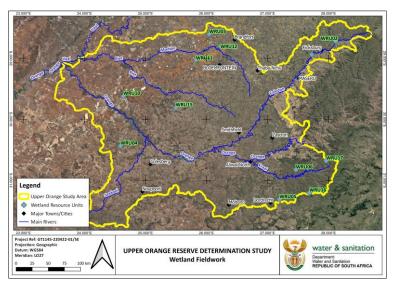
WRU 12b - Aardoringspruit Wetland Flat							
Importance							
Ecological Importance & Sensitivity	3.1						
Hydro-Functional Importance	2.5						
Direct Human Benefits	0.2						
Overall Importance And Sensitivity Score	3.1						
Overall Importance And Sensitivity Category	В						

Large potential for additional cultivation in the catchment which would need to be monitored

WATER IS LIFE - SANITATION IS DIGNITY

30

Asses

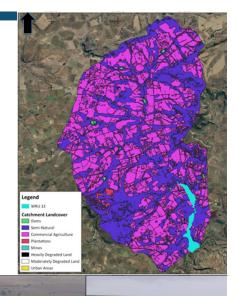

ned Im

ed PE

WETLAND: WRU12

- Eco-specifications:
 - No further dams or roads to be constructed in the wetlands
 - No intensive cultivation to be permitted within the wetlands
 - · Maintain current grazing regimes within the wetlands

WETLAND REPORT FEEDBACK



WATER IS LIFE - SANITATION IS DIGNITY

32

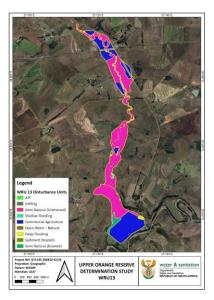
WETLAND: WRU13

- Catchment is approximately 30 000ha in size with extensive agriculture (33%) as the most prolific impact. Other impacts include:
 - Plantations, urban areas, dams, mines and erosion
- Three wetland units in the WRU:
 - Floodplain, channelled valleybottom and unchannelled valleybottom
- Fairly extensive impacts within the wetlands include:
 - Cultivation, grazing, AIP encroachment, channel incision, erosion

Wetland PES Summary										
HGM type	Floodplain wetland									
Wetland area (ha)	95.0 ha									
PES Assessment	Hydrology	Geomorphology	Water Quality	Vegetation						
Impact Score	4.9	3.1 2		7.0						
Ecological Category	D	С	С	E						
Combined Impact Score		4.	.5							
Combined PES Score (%)	55%									
Combined Ecological)							

WRU 13a - Rantsho Floodplain Wetland						
	Importance					
Ecological Importance & Sensitivity	3.0					
Hydro-Functional Importance	2.8					
Direct Human Benefits	0.7					
Overall Importance And Sensitivity Score	3.0					
Overall Importance And Sensitivity Category						

Wetland PES Summary									
HGM type	Cha	nnelled VB wetland	not laterally mainta	ined					
Wetland area (ha)		71.4 ha							
PES Assessment	Hydrology	Vegetation							
Impact Score	2.8	1.6	1.6	4.9					
Ecological Category	С	В	В	D					
Combined Impact Score		2	.7						
Combined PES Score (%)	73%								
Combined Ecological Category									


WRU 13b - Rantsho CVB Wetland	
	Importance
Ecological Importance & Sensitivity	3.0
Hydro-Functional Importance	2.5
Direct Human Benefits	0.3
Overall Importance And Sensitivity Score	3.0
Overall Importance And Sensitivity Category	

	Wetla	nd PES Summary		WRU 13c - Rantsho UCVB Wetland		
HGM type		Unchannelle		Importance		
Wetland area (ha)		108.	1 ha		Ecological Importance & Sensitivity	3.2
PES Assessment	Hydrology Geomorphology Water Q			Vegetation	Hydro-Functional Importance	3.0
Impact Score	4.7 2.8		3.4	7.0	Direct Human Benefits	0.7
Ecological Category	D	D C C		E	Overall Importance And Sensitivity Score	3.2
Combined Impact Score		4.	5		Overall Importance And Sensitivity Category	В
Combined PES Score (%)		55	%			
Combined Ecological Category						
category						

34

WETLAND: WRU13

- REC is C category for all wetlands in WRU 13
 - The REC for the floodplain wetland could be achieved if some of the cultivation in the wetland was reduced or altered to low-impact crops along with the removal of AIPs
 - The REC for the unchannelled valley-bottom could similarly be achieved with the reduction of intensity of cultivation in the wetland and through the rehabilitation of the gullies which threaten the integrity of the wetland

Eco-specifications

- · No further cultivation or intensive land uses
- No further infrastructure (dams or roads) to be constructed in the remaining intact wetlands
- No further degradation of water quality agricultural and livestock operations to be periodically monitored for discharge into WRU 13
- · No further encroachment of woody AIP species

WATER IS LIFE - SANITATION IS DIGNITY

36

EWR QUANTIFICATION REQUIREMENTS

WRU Number	Require EWR quantification
WRU 02	No
WRU 03	No
WRU 04	No
WRU 05	Yes. These wetlands are under high levels of pressure and the EWR is at risk of being compromised.
WRU 06	Yes. These wetlands are under high levels of pressure and the EWR is at risk of being compromised. Opportunity to rehabilitate.
WRU 10	No
WRU 11	Yes. These wetlands are under high levels of pressure and the EWR is at risk of being compromised. Opportunity to rehabilitate.
WRU 12	No
WRU 13	Yes. These wetlands are under high levels of pressure and the EWR is at risk of being compromised. Opportunity to rehabilitate.
WRU 15	No
WRU 16	No
WRU 17	No

WRU Number	HGM Unit	PES	EIS	REC
WRU 02	Floodplain	С	В	С
WRU 03	Depression (Soutpan)	С	С	С
	Depression	В	С	В
WRU 04	Depression	Α	С	A
WK0 04	Unchannelled VB	С	С	A
WRU 05	Unchannelled VB	С	В	С
WKU US	Seep	С	С	С
WRU 06	Channeled VB	D	С	D
	Seep	D	С	С
WRU 10	Depression	В	С	В
WRU 11	Channeled VB	С	В	С
	Depression	С	С	С
WRU 12	Channeled VB	С	С	С
WRU 12	Flat	С	В	С
	Floodplain	D	С	С
WRU 13	Channeled VB	С	С	С
	Unchannelled VB	D	В	С
WRU 15	Channeled VB	С	С	С
WRU 16	Channelled VB	A	в	А
WRU 16	Seep	Α	В	A
WRU 17	Seep	Α	с	А

GROUNDWATER RESERVE COMPONENT RESULTS AND FEEDBACK

WATER IS LIFE - SANITATION IS DIGNITY

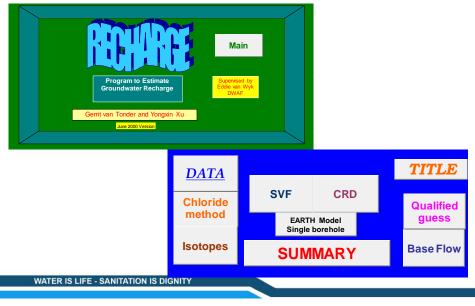
GROUNDWATER: APPROACH

- Available groundwater and other relevant data from DWS
 - Time series groundwater levels (Hydstra)
 - Time series groundwater quality (mainly WMS)
 - Groundwater Abstraction (mainly WARMS)
 - Flow data (WR, 2012)
- Execution of GRDM determinations for the set of groundwater resource units, including groundwater dependent ecosystems (GDEs), identified in the study;
 - Although, the current GRDM is currently under review. An update of the GRDM methodology and software is expected in 2024.
- Address both the quantity/quality of the EWR and BHN components;
- · Determination of the EWR and BHN component; and
- Infield verification for GW Reserve determination (single hydrocensus survey in April 2022.

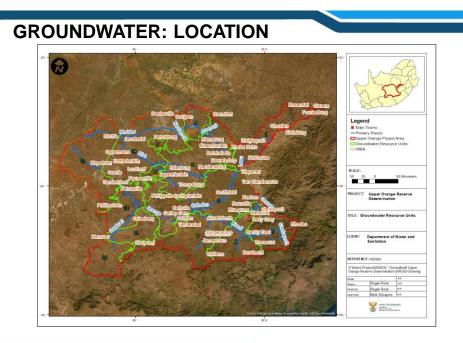
WATER IS LIFE - SANITATION IS DIGNITY

40

GROUNDWATER: RESERVE


 Water Balance Approach Adopted to determine the Reserve and Stress Index (WRC, 2012)

Reserve (%) = Where:	EW	/R _{gw} + BHN _{gw} /Re x 100
Re	=	Recharge
BHN _{aw}	=	Basic human needs derived from groundwater
EWR _{gw}	=	Groundwater contribution to EWR


 Stress Index expressed as either a Surplus or Deficit in the catchment

Stress Index (SI) = Re – (GW_{use} + EWR_{gw} + BHN_{gw})

GROUNDWATER: RECHARGE

42

<section-header>

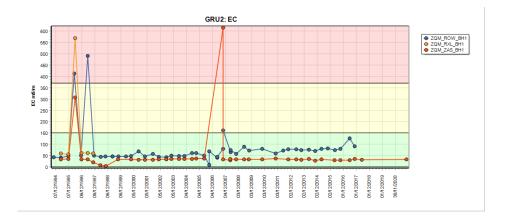
44

<section-header>

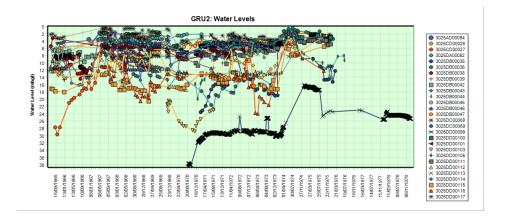
WATER IS LIFE - SANITATION IS DIGNITY

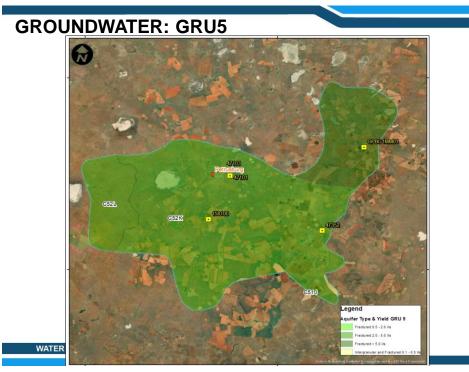
<section-header>

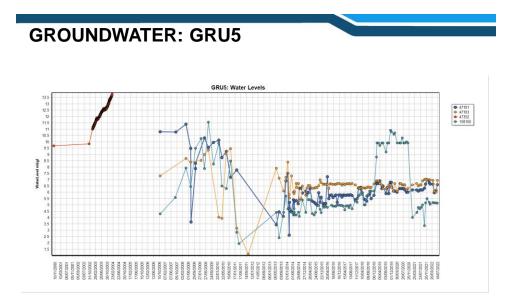
WATER IS LIFE - SANITATION IS DIGNITY


46

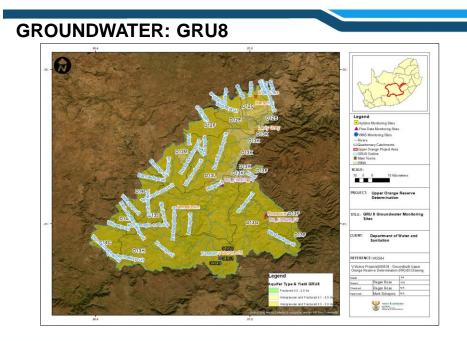
GROUNDWATER RESERVE


- · A total of 14 groundwater RU were identified; and
- A subset of GW RU's will be presented here, with a focus on the stress, recharge and Reserve.

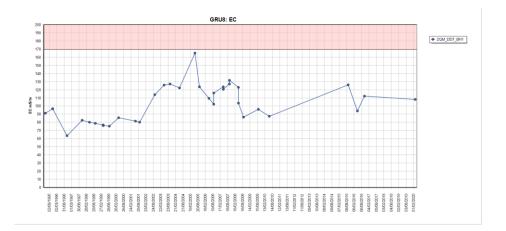

GROUNDWATER: GRU2



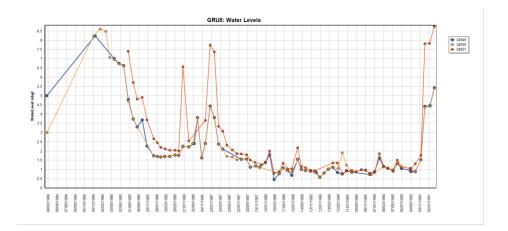
GROUNDWATER: GRU2



WATER IS LIFE - SANITATION IS DIGNITY



WATER IS LIFE - SANITATION IS DIGNITY


WATER IS LIFE - SANITATION IS DIGNITY

WATER IS LIFE - SANITATION IS DIGNITY

GROUNDWATER: RECHARGE

· Based on the available data, the Recharge toolkit was used to determine recharge per quaternary catchment. Due to the lack of sufficient monthly water level data, recharge estimation was mainly limited to the CMB method and gualified guesses.

Quaternary Catchment	Recharge Method	Average Annual Recharge (mm)	% Recharge	Recharge (Mm3/a)
C51A	CMB+Qualified Guess	16.6	3.5	11.205
C51B	Qualified Guess	14.5	3.1	24.548
C51C	Qualified Guess	16.8	4	10.508
C51D	Qualified Guess	17.1	3.5	15.796
C51E	Qualified Guess	17	4	13.681
C51F	Qualified Guess	15.8	4.3	13.880
C51G	CMB+Qualified Guess	14.8	3.7	27.112
WATER IS LIFE -	SANITATION IS DIGNITY			

56

GROUNDWATER: CONTRIBUTION BASEFLOW

- · Consultation with the civil engineering department at the University of Pretoria, a simplistic technique of baseflow separation was devised that could provide reasonable results based on the limited available data.
- The technique considers the monthly flow during dry months, specifically extracting the lowest average monthly flows during dry months.
- A desktop analysis was conducted using these lowest monthly flows as a proxy for baseflow.
- Various options exist including using the single lowest, two lowest or three lowest monthly flows. In this assessment, we considered all three options and conducted a sensitivity analysis to determine the significance of the differences between the three options.
- The results indicated an insignificant difference, and therefore an average of the results from the three options were used to determine the baseflow.

GROUNDWATER: CONTRIBUTION TO BASEFLOW

			Flo	ws					Baseflow			
Quaternary	Average Annual total flow (1920- 2009) (Mm ³ /a)	Lowest average monthly flow (Mm³/m)	2nd Lowest average monthly flow (Mm³/m)	3rd Lowest average monthly flow (Mm³/m)	Average of two lowest monthly flows (Mm³/m)	Average of three lowest monthly flows (Mm ³ /m)	Lowest average monthly flow/average annual total flow (Mm ³ /m)	Average of two lowest monthly flows/average annual total flow (Mm ³ /m)	Average of three lowest monthly flows/average annual total flow (Mm ³ /m)	Average Baseflow (%)	Baseflow (Mm³/m)	Baseflow (Mm³/a)
C51A	15.03	0.14	0.18	0.19	0.16	0.17	0.93	1.06	1.13	1.04	0.16	1.92
C51B	20.07	0.23	0.27	0.3	0.25	0.27	1.15	1.25	1.33	1.24	0.25	3
C51C	9.39	0.07	0.09	0.14	0.08	0.1	0.75	0.85	1.06	0.89	0.08	0.96
C51D	16.18	0.15	0.16	0.2	0.16	0.17	0.93	0.96	1.05	0.98	0.16	1.92
C51E	18.69	0.15	0.19	0.2	0.17	0.18	0.8	0.91	0.96	0.89	0.17	2.04
C51F	12.12	0.08	0.11	0.12	0.1	0.1	0.66	0.78	0.85	0.77	0.09	1.08
C51G	42.74	0.35	0.44	0.49	0.4	0.43	0.82	0.92	1	0.91	0.39	4.68
Maximum Baseflow (Mm ³ /year)								64.6	8			
Minimum Baseflow (Mm³/year)												

WATER IS LIFE - SANITATION IS DIGNITY

58

GROUNDWATER: QUALITY RESERVE

- Available chemical parameters are:
 - EC, calcium, magnesium, sodium, potassium, total alkalinity, chloride, sulphate, nitrate/nitrite and fluoride
- Median concentrations of each chemical parameter were determined to characterise the dominant groundwater quality
- Groundwater Quality Reserve was set at median concentrations plus 10% for each chemical parameter

GROUNDWATER: QUALITY RESERVE

	Unit	Quaternary D22G						
Chemical Parameter		No. of Samples	Ambient GW quality or median ¹	BHN Reserve ²	Groundwater Quality Reserve ³			
рН	-	46	8.10	5.0 – 9.5	8.91			
Electrical Conductivity	mS/m	46	44.60	<150	49.06			
Calcium as Ca	mg/l	46	26.39	<150	29.03			
Magnesium as Mg	mg/l	46	8.60	<100	9.46			
Sodium as Na	mg/l	46	62.11	<200	68.32			
Potassium as K	mg/l	46	3.42	<50	3.76			
Total Alkalinity as CaCO3	mg/l	46	189.07	<330	207.98			
Chloride as Cl	mg/l	46	19.60	<200	21.56			
Sulphate as SO ₄	mg/l	46	18.50	<400	20.35			
Nitrate and Nitrite as N	mg/l	46	1.77	<1.0	1.95			
Fluoride as F	mg/l	46	0.83	<1.0	0.91			
			Water	quality class	Class 1			

¹ Median value (calculated from population of samples in QC).

² Upper limit of Class I water quality (DWAF et al 1998).

³ The median plus 10% for the Groundwater Quality Reserve.

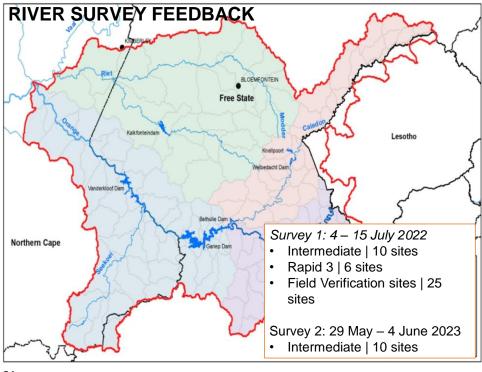
WATER IS LIFE - SANITATION IS DIGNITY

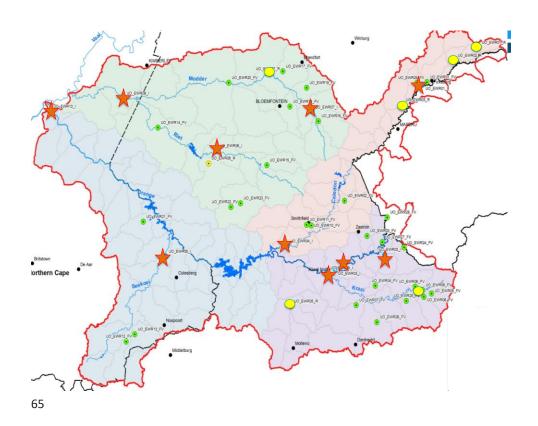
60

GROUNDWATER: QUANTITY RESERVE, INCLUDING STRESS INDEX

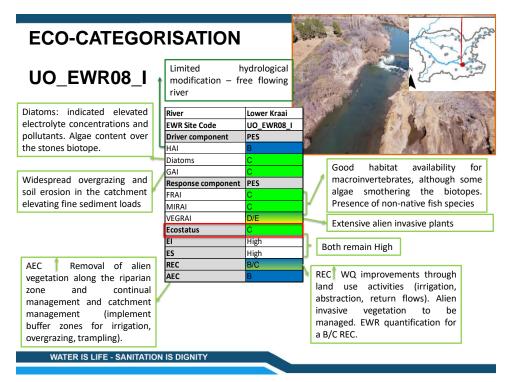
- In accordance with WRC (2012), components of the Groundwater Reserve include groundwater recharge, BHN for groundwater, as well as groundwater contribution to baseflow.
- Using the available data, the latter components were estimated to determine the Groundwater Reserve as a percentage of Recharge.
- Results:

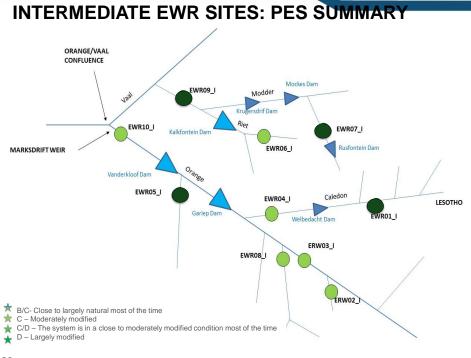
Quaternary Catchment	Recharge (Mm3/a)	Basic Human Needs Groundwater Reserve (Mm3/a)	Groundwater Baseflow (Mm3/a)	Groundwater Reserve (Mm3/a)	Groundwater Reserve (% of Recharge)	Current Groundwater Use (Mm3/a)	Surplus / Available Groundwater (Mm3/a)	Stress Index
C51A	11.205	0.004	0.16	0.164	1.43	1.821	9.220	B/C
C51B	24.548	0.007	0.25	0.257	1.04	1.221	23.070	A/B
C51C	10.508	0.003	0.08	0.083	0.82	0.983	9.442	B/C
C51D	15.796	0.017	0.16	0.177	1.11	0.574	15.045	В
C51E	13.681	0.01	0.17	0.18	1.29	1.247	12.254	B/C
C51F	13.88	0.005	0.09	0.095	0.7	0.869	12.916	B/C
C51G	27.112	0.007	0.39	0.397	1.47	1.992	24.723	A/B
C51H	27.668	0.01	0.29	0.3	1.08	3.602	23.766	A/B

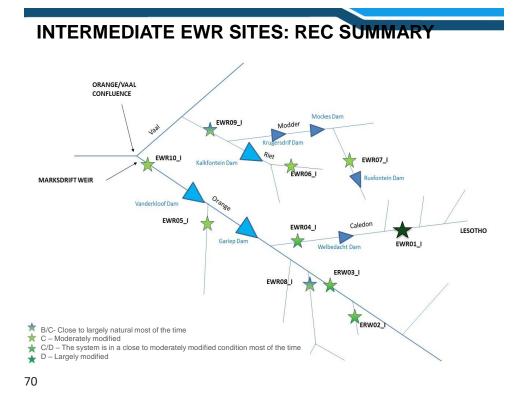

- The Groundwater Reserve varies from 0.01 - 18.66%.



RIVER ECOLOGICAL CATEGORISATION




RIVERS ECO-CATEGORISATION

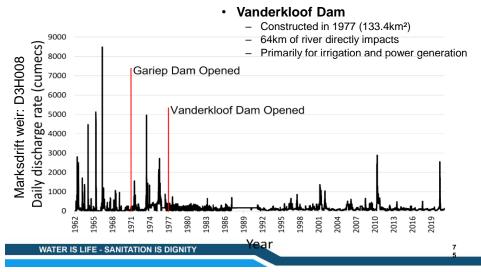

- The Eco-categorisation process was followed according to the methods of Kleynhans and Louw (2007);
- Eco-categorisation is the determination and categorisation of the PES (health and/or integrity) of various biophysical attributes of rivers relative to the natural or close to the natural reference condition;
- These results then provide the information needed to derive desirable and attainable future ecological objectives for the rivers;
- Starts with assessing existing/available data at all identified EWR sites; and
- The following models were subsequently run using the data gathered during the river surveys (Sep'22 and May'23):
 - Hydrological Driver Assessment Index (HAI);
 - Geomorphology Driver Assessment Index (GAI);
 - WQ: Diatoms used to infer the present physical-chemical state of the system;
 - Macroinvertebrate Response Assessment Index (MIRAI);
 - Fish Response Assessment Index (FRAI);
 - Riparian Vegetation Response Assessment Index (VEGRAI);
 - Index of Habitat Integrity (IHI) instream and riparian; and
 - EcoStatus Model

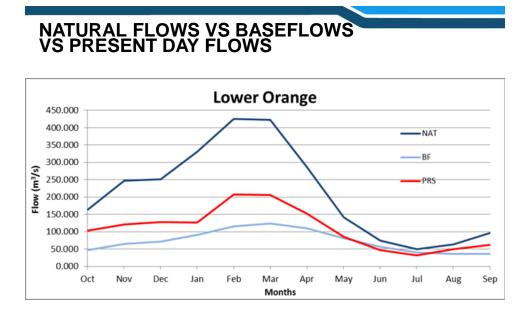
WATER IS LIFE - SANITATION IS DIGNITY

ECO-CATEGOR	ISATION		
UO_EWR03_I	Hydrological modification to upstream impoun- within Lesotho	The second se	A A A
Diatoms: elevated nutrient concentrations prevalent at the site because of the Sterkspruit discharging untreated sewage upstream. Other contaminants and toxins were also picked up given the untreated effluent discharged upstream.	River EWR Site Code Driver component	Upper Orange UO_EWR03_I PES	
	HAI Diatoms GAI Response component FRAI	D C C C PES D	Poor habitat availability for both fish and aquatic macroinvertebrates
Widespread overgrazing and soil erosion in the catchment (largely Lesotho and communal land) elevating fine sediment loads)	MIRAI VEGRAI Ecostatus	C/D D D	Extensive alien invasive plants (High)-Moderate (riparian-
	EI ES REC AEC	Moderate Moderate D C/D	wetland zone habitat integrity class / instream habitat integrity class)
AEC Reach is not driven by w (upstream activities). Catchment, mining, upstream practices w implementation of environmental f	(High)-Moderate (reduced macroinvertebrate sensitivity / riparian-wetland vegetation intolerance to water level		
WATER IS LIFE - SANITATION	IS DIGNITY		changes)

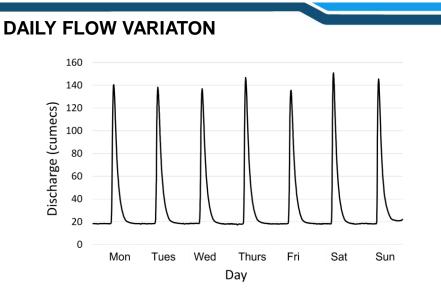
RIVERS EWR QUANTIFICATION

- · EWR quantification is based on the REC;
- The Habitat Flow Stressor Response method (HFSR)
 - Low or baseflows for the intermediate sites;
- · Floods/ freshets were also defined;
 - using a combination of the downstream Response to Imposed Flow Transformation (DRIFT)
 - Building Block Method (BBM) approach
- For all Rapid 3 level EWR sites
 - the Desktop Reserve Model (DRM) within SPATSIM
- Results from the hydraulic modelling cross-sectional profile, discharge, Habflo model
- The EWR Quantification results have just been approved by DWS and will be shared on the website for stakeholders.

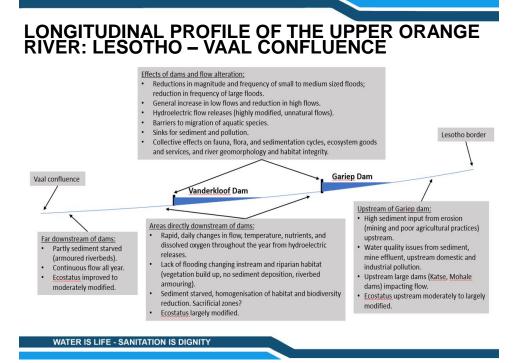

FLOW MANAGEMENT PLAN

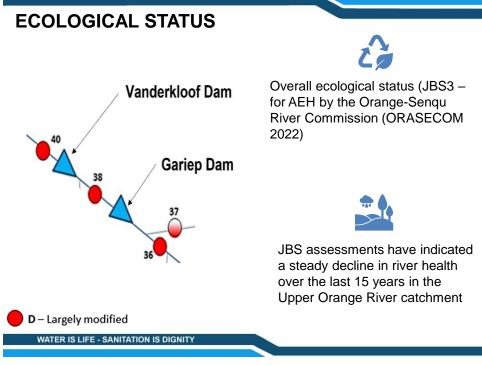


HISTORY OF FLOW ALTERATION


Gariep Dam

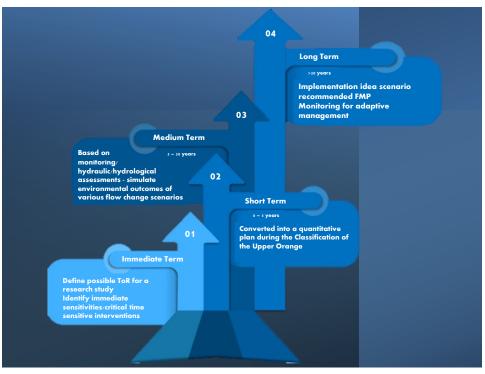
- Constructed in 1971 (352.2km²)
- 113.3km of river directly impacts
- Primarily for irrigation, domestic industrial and power generation




WATER IS LIFE - SANITATION IS DIGNITY

Discharge recorded from Vanderkloof Dam at gauging station (station D3R003) over a one-week period (01/01/2020 - 08/01/2020). Pattern shows the daily hydropeaking resulting from hydroelectric power generation releases.

WATER IS LIFE - SANIT	TATION IS DIGNITY
-----------------------	-------------------


CONCEPTUAL FLOW MANAGEMENT PLAN

- Meeting with DWS, PSP and Eskom in February 2023;
- Outcome to develop a conceptual FMP (initially suppose to conduct 2 intermediate sites below the dams, however due to altered flows and operation, we elected a conceptual FMP);
- Based on the current social/economic climate of SA:
 - Dams fulfil a critical role in providing water/power generation
 - Thus, cannot be avoided or flows altered
 - EWRs cannot be set for the sacrificial zone
 - Instead recommendations / action plans have been proposed (upcoming slides)
- The conceptual FMP will form a chapter within the EWR Quantification Report deliverable.

	WATER IS LIFE - SANITATION IS DIGNITY	8 0
80		

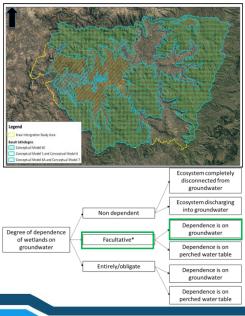
CONCEPTUAL FLOW MANAGEMENT PLAN

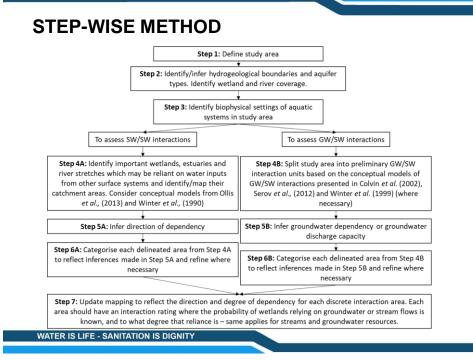
- We understand the significant negative environmental/social/ economic consequences of the current flow regimes;
- Thus, this conceptual FMP should be considered and taken forward into the Classification of the Upper Orange catchment area (subsequent study) with possible socio-economic trade-offs;
- Overall, several avenues however do remain to be investigated to work towards:
 - Development of optimum environmental flows
 - Ecological Reserve
 - EWRs that maintains some of the core functionality of the dams allowing to improve the aquatic ecosystem health and boost ecological goods and services; and
- For now, the conceptual FMP has suggested immediate, short term (0-5 years), medium term (5-20 years) and long term (>20 years) recommendations....

WHY INTEGRATE DIFFERENCE COMPONENTS OF THE STUDY?

- Assess the probability of hydrological dependence between:
 - Groundwater and surface water resources
 - Discrete surface water resources
- Assessment developed where multiple resource units overlap to estimate the hydrological dependency on one another
- Environmental authorisations that result in the degradation of one suite of resources may have additional indirect impacts on other resources
- Integrated assessment of these resources is necessary

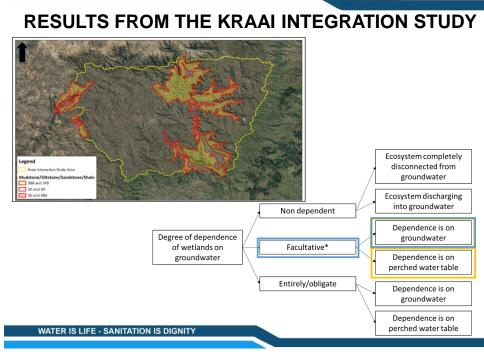
84

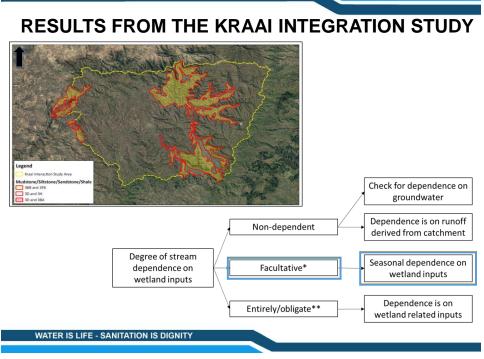

WHAT ARE THE OUTPUTS?

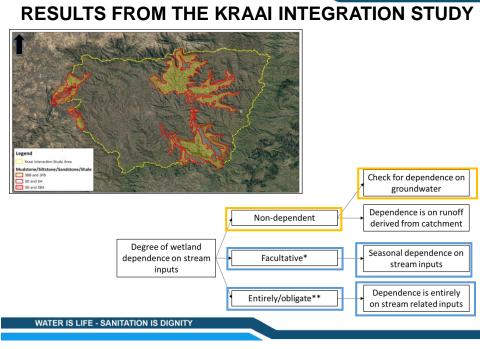

 Broad spatial data where the direction (i.e., which water resource is dependent on other water resources) and degree (i.e., whether one water resource is partially or completely hydrologically dependent on another) of dependency is shown

WATER IS LIFE - SANITATION IS DIGNITY

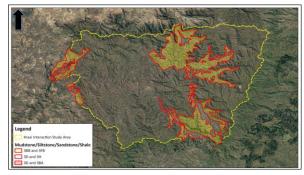
 Conceptual understanding of how groundwater and surface water systems interact, and how different surface water systems interact


WATER IS LIFE - SANITATION IS DIGNITY





DATA CONSIDERED FOR INTEGRATION


- Water resource coverage (wetland, river, groundwater GIS layers);
- · Geological information;
- Vegetation types;
- · Slope and elevation data;
- · Aquifer transmissivity data;
- · Borehole density and depth to ground water;
- · Flow data in rivers;
- · Wetland typologies; and
- The more data made available, the more confident and robust the outputs are.

CONTEXT OF THE RESERVES

 Surface water systems less dependent on groundwater, but wetlands have higher dependence on streams – therefore streamflow modifying activities should be considered in terms of wetlands as well as streams

Surface water systems rely on groundwater/perched aquifers – therefore groundwater abstraction may have an impact on groundwater fed wetlands and baseflow dependent streams

WATER IS LIFE - SANITATION IS DIGNITY

CONCLUSION

WATER IS LIFE - SANITATION IS DIGNITY

- · A new approach yet to be finalised
- May yield important cross-discipline and cross water resource information for future authorisations
- The quality of data drastically impacts the confidence of these models
- Stakeholders can be involved by sharing any streamflow or borehole depth data

PROPOSED SCENARIOS

PROPOSED SCENARIOS

Number	Code	Description
Sc1	PRS1	Present day without EWR
Sc2	PRS2	Present day with EWR for REC
Sc3	FUT1	2040 : Polihali, Makhaleng (pipeline to Botswana), Pipeline from Gariep to Bloemfontein, Caledon weirs with EWR for REC, estuarine requirements
Sc4	FUT2	2040: Polihali, Makhaleng (pipeline to Botswana), Pipeline from Gariep to Bloemfontein, Caledon weirs without EWR
Sc5	FUT3	2060: Polihali, Makhaleng (pipeline to Botswana), Pipeline from Gariep, Caledon weirs, Verbeeldingskraal on upper Orange, Boskraai on lower Kraai, EWR for REC, estuarine requirements
Sc6	FUT4	2060: Polihali, Makhaleng (pipeline to Botswana), Pipeline from Gariep, Caledon weirs, Verbeeldingskraal on upper Orange, Boskraai on lower Kraai, without EWR
Sc7	wq	Present day flows with EWR for REC (Sc2) with progressive water quality decline

WATER IS LIFE - SANITATION IS DIGNITY

94

NEXT STEPS...

- Step 5
 - Evaluate the consequences of management scenarios /rules
- Step 6
 - Discussing/ presenting of the consequences for the management scenarios with the stakeholders

ep 2	•Determine eco-regions, delineate resource units, select priority study sites and where appropriate, align with Step 1 of the water resource classification procedure.
ep 3	 Determine the reference conditions, present ecological status (PES), ecological importance and sensitivity(EI-ES), recommended ecological category (REC) and Ecological Water Requirement (EWR) for the priority selected study sites.
ep 4	•Determine the basic human needs (BHN) and EWR for each of the selected priority study sites
_	
ep 5	•Determine the operational scenarios/rules and ecological consequences for meeting the Reserve (aligned with the classification procedure)
-	
\mathbf{v}	•Evaluate the scenarios with stakeholders

Design appropriate Reserve templates, eco-specifications and monitoring programme including monitoring requirements

 Identify priority quaternary and sub-quaternary catchments that are potentially important due to their presence, extent or condition of water resources with a focus on wetlands and groundwater driven systems. Initiate the BHN and EWR assessment

WATER IS LIFE - SANITATION IS DIGNITY

Gazette and implement the Reserve

THANK YOU!

96

Professional Service Provider: Stakeholder Engagement Specialist Ms Fonda Lewis 0827074061 Stakeholder.orange@groundtruth.co.za

Project Director Dr Mark Graham 0823777089 mark@groundtruth.co.za

Project Manager Mrs Kylie Farrell 0836864212 Kylie.farrell9@gmail.com Department of Water and Sanitation: Project Manager Ms Ndivhuwo Netshiendeulu 0647596744 NetshiendeuluN@dws.gov.za

DWS Website where reports can be accessed from: https://www.dws.gov.za/rdm/currentstudies/default.aspx

WATER IS LIFE - SANITATION IS DIGNITY